If it's not what You are looking for type in the equation solver your own equation and let us solve it.
150(t)=16t^2
We move all terms to the left:
150(t)-(16t^2)=0
determiningTheFunctionDomain -16t^2+150t=0
a = -16; b = 150; c = 0;
Δ = b2-4ac
Δ = 1502-4·(-16)·0
Δ = 22500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{22500}=150$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(150)-150}{2*-16}=\frac{-300}{-32} =9+3/8 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(150)+150}{2*-16}=\frac{0}{-32} =0 $
| -6x+42=30 | | 10x-10+100=180 | | 15-3=-7a+7 | | 4+3x-1/2=8 | | 15(1/3)z=5 | | x/2+13=37 | | 10+2y=-1y+9+3y | | 2w=37 | | 6/9=x/33 | | 10b=–3+9b | | 14x-2+70=90 | | 5=-5(-x+6) | | 5-2(x+3)=x=14 | | 14x-2=70=90 | | x^2+6=-42 | | 12=4x+3x | | 13x+x-9=47 | | -3(6x+10)=-30 | | 2(h-3)=1/7(7h+28) | | 5r-15/9+6=1 | | -2-2r=-14 | | 3x+4=2x-7+20=180 | | 6r-8=6r+8 | | 16x-x2-64+4x=48 | | 5=-5(-x=6) | | (x+3)^2-21=0 | | (3+x)+(x-8)=22 | | 4(x-6)^2=196 | | 4n-(-2)=-6 | | 100x^2-100=(10X)^2-10^2 | | -2-2r=14 | | 9x+54=54 |